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Sex-Gender Differences in Diabetes Vascular Complications and Treatment
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Abstract: Diabetes mellitus and cardiovascular diseases act as two sides of the same coin: diabetes is an important
risk factor for cardiovascular disease while patients with ischemic cardiovascular diseases often have diabetes or
pre-diabetes. As firstly shown by Framingham study, diabetic women have an increased cardiovascular risk about 3.5 fold
higher than non diabetic women, against an increase of “only” 2.1 fold found in male subjects. In view of the impact of
sexual hormones on glucose homeostasis, the molecular pathways involved in insulin resistance suggest a sex-gender
specificity mechanism in the development of diabetic complications leading to the unmet need of sex-gender therapeutic
approaches. This has also been seen in other diabetic complications such as renal diseases, which seems to progress at a
faster rate in females compared with males and women benefit less from treatment than do men. Of note, none of the trials
done so far are primarily designed to assess sex-gender differences in the benefit from a specific intervention strategy, de
facto excluding fertile women from experimentation. In order to provide a more evidence based medicine for women and
to reach equity between men and women, sex-gender epidemiological reports, preclinical and clinical research are
mandatory to evaluate the impact of gender on the outcomes and to improve sex-gender awareness and competency in the
health care system. Future studies should consider sex-gender differences in the setting of randomized controlled trials

with drugs.
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INTRODUCTION

Gender is considered a social construct that generally
transforms a female in woman and a male in man, whereas
sex is generally considered the biological aspect of
femininity and masculinity. In view of the numerous
interactions existing between sex and gender, that some of us
have already discussed [1 and literature cited therein],
sometimes it is difficult to divide sex from gender, therefore
we prefer to adopt sex-gender. In fact, differences and
inequalities in health status often derive from both biological
differences and social, cultural and political arrangements in

society (Fig. (1)).

Historically, most experimental, clinical and epidemiolo-
gical studies are performed in men and the results are simply
applied to women [2]. Consequentially, much of the human
data found in medical texts represent the environment in
which the testing has been conducted and the largest number
of “‘healthy’’ individuals have been provided in medical
schools and military institutions. Therefore, most of the data
present in physiology textbooks represent young healthy, 70-
kg Caucasian males [3] and literature cited therein].
Consequently, most modern guidelines are based on studies
predominantly conducted in Caucasian adult men or, at the
best, mostly post-menopausal women.

Actually, it is emerging that causes, risk factors, clinical
manifestations, prognosis, therapeutics and outcomes are

*Address correspondence to this author at the Department of Biomedical
Science, University of Sassari, Via Muroni 23, 1-07100 Sassari, Italy;
Tel: +39 079228717; E-mail: icampesi@uniss.it

2212-3873/12 $58.00+.00

highly influenced by sex-gender [4] suggesting that a wider
sex-gender-sensitive knowledge is necessary to provide the
basis for specific evidence-based interventions both for men
and women. Here, we address sex and gender-specific aspects
in diabetes mellitus (DM) and its vascular complications,
which represents an increasing burden of this century and a
great challenge to public health.
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Fig. (1). Biological, psychological and social generators of sex-
gender differences in humans.

EPIDEMIOLOGY AND DRIVING FORCES BEHIND
DM2 EPIDEMIC DIFFUSION
Epidemiology

A classical example of sex-gender differences is the so

called idiopathic diabetes, which has a very high (75%) male
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predominance [5]. Regarding, the more common forms of
DM: type 1 and type 2 DM (DM1 and DM2) [6], it is
important to recall that DMI is characterized by a female:
male ratio that is approaching 1:1 with a slight predominance
of men [7]. Notably, the male predominance starts after
puberty [5]. Importantly, the frequency of antibodies against
glutamic acid decarboxylase (GADA) depends on sex, with
female patients having higher levels of GADA and a more
severe loss of B cell function than male patients with the
same age at diagnosis [8].

DM2 is the most common endocrine disease with
steadily increasing incidence reaching epidemic proportions
[9]. It is estimated that by the year 2030 about 366 million
people will have DM2 and, despite all the efforts to control
it, the number of patients will increase from the present 2.8%
to 4.4% of the human population [10]. The total number of
women with DM2 is 10% higher than in men, as well as the
number of women with impaired glucose tolerance (IGT),
which is 20% higher than in men [11].

Driving Forces Behind DM2

The driving forces behind the high prevalence of DM2
are family history, age, obesity, unhealthy lifestyle, social
and psychological factors.

Obesity/Nature of Adipose Tissue/Metabolic Impact

The WHO report [12] shows comparable rates of
overweight individuals between both sexes in Europe, but
obesity (body mass index (BMI) >30) ranges between 7 and
36% in women and between 5 and 23% in men. Indeed, men
have predominantly visceral adiposity, which is associated
with a more adverse metabolic profile and with a higher risk
to develop atherosclerosis than the accumulation of
subcutaneous fat typical of the female sex [13]. However, in
women but not in men, weight changes after 18 years are
linearly related to impaired fasting glucose (IFG), a
condition related as pre-diabetes [14]. Nevertheless, the
predominantly visceral adiposity in men in comparison with
women, inflammatory parameters rise only in women,
supporting the concept that weight gain triggers clusters of
changes in cardiovascular risk factors in a sex-gender
dependent way [15]. Additionally, obesity seems to be a
more prominent risk factor for the development of DM in
women than in men [16].

It is well acknowledged that women, starting from
childhood, are usually more sedentary than men and that
their lower physical activity may contribute to the increased
prevalence of overweight, obesity and insulin resistance [17].
Pregnancy, a condition of insulin resistance, might also
contribute to the higher prevalence of obesity in women (see
below).

There are no evident sex-gender differences in the
prevalence of DM2 but the number of women with DM (+10%)
and its precursor IGT (+20%) has been reported to be slightly
higher than in men, who more often feature an isolated IFG
[18, 19]. The increased prevalence of altered glucose
metabolism in women [19] might be, in part, attributable to
different glucose, and lipid metabolism observed in men and
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women [1] literature cited therein] and to the higher rate of
DM and of pre-diabetes (in particular IGT) in elderly women
[20]. Additionally, women are more frequently characterized
by postprandial hyperglycaemia than men [19, 20], a
condition, typical of IGT, which is associated with increased
oxidative stress and a higher cardiovascular risk as stated in
Framingham Offspring Study [21] and in successive study
[22]. It has been suggested that a prolonged gut absorption
might contribute to the higher prevalence of postprandial
hyperglycaemia in women as compared to men [23].

Few data are available on sex and gender-related
differences in insulin sensitivity and insulin secretion.
However, men with IFG or normal glucose tolerance have a
more pronounced insulin resistance as compared to women
with comparable glucose tolerance status [24, 25]. In
contrast, females more often exhibit isolated IGT [19, 20],
which is characterized by more prominent defects in first and
late phases of insulin secretion [24]. These data are in line
with a Danish study showing women to be characterized by
higher insulin and lower glucose levels at fasting (-7%) as
well as by an increased glucose disappearance rate indicating
better insulin sensitivity [26]. Women also show a higher
disposition index (the product of insulin sensitivity and
insulin secretion). Much of the previous differences in
insulin sensitivity depend on body fat, maximal aerobic
capacity and use of oral contraceptives [27]. Sex and gender-
related differences in the prevalence of the two forms of pre-
diabetes (IFG or IGT) reflect in sex-gender specificity of the
respective diagnostic tests for the detection of pre-diabetes
and also DM2 see below.

It is important to recall that in young age DM2 is far
more common in girls than in boys [28-30]. Increasing
evidences suggest that girls are more insulin resistant than
boys at birth and through early and late childhood [31-34],
puberty and adolescence [35-37].

Insulin resistance is considered to be the main cause of
the metabolic syndrome characterized by dyslipidemia,
hypertension and visceral obesity, and has become a
worldwide health issue [38]. Sex-gender differences in
metabolic syndrome have been recently reviewed by Regitz-
Zagrosek et al. [39].

It is believed that the main factor disrupting glucose
homeostasis in DM2 is insulin resistance [40], although
B cell insulin secretion must be impaired in order to develop
DM2.

Hormonal Factors and Aging

There are numerous interactions between sex/reproduction
and energy metabolism being energy metabolism differently
regulated in men and in women and it is believed that the
circulating androgen and estrogen play a role [41]. The
increase in life time leads male and women to live part of
their life in age-related estrogen or androgen deficiency,
which predisposes to metabolic syndrome and DM2 [41].

Testosterone has sexual dimorphic effects on the
incidence of DM2: high levels are protective against DM2 in
men but have the opposite effect in women, while low levels
of testosterone and sex hormone-binding globulin are
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associated with the development of DM2 in men [11]. In
particular, the prevalence of hypogonadism in men with
DM2 is 20% to 60% [42, 43]. Testosterone replacement
therapy in hypogonadal men improves insulin sensitivity,
decreases abdominal fat mass and disturbances in lipid and
glucose metabolism, and has a multidimensional favourable
effect on cardiovascular risk profile [44-46], although this
has been recently questioned in a special population [47]. On
the other hand, hyperandrogenic women develop DM2 (see
polycystic ovarian syndrome section), however women with
complete androgen insensitivity syndrome have increased
total fat mass compared with both female and male age
matched control subjects [41].

Social/Psychological Factors

Socio-economic status is an important determinant of
health. An association has been evidenced between poverty
and DM2 [48-51]. Furthermore an association has been
found among deprivation and trauma and DM2 [52] and it
has also been suggested that the association is stronger for
men than for women [53].

The higher prevalence of DM2 in the low economic
status could be attributable to a variety of factors such as
obesity and physical inactivity [54, 55]. However, the
differences are not fully dependent on differences in obesity
and physical activity indicating that other factors are
involved [56]. At this regard, it could be important low birth
weight, a known risk factor for DM2 [57], that is associated
with poverty [57].

Importantly, mental illness is often associated with DM.
The prevalence of DM has been reported to be two to four
times higher in people with schizophrenia than the general
population [58]. A recent Chinese study shows that the
overall DM2 prevalence is 20% and 27% in men and in
women, respectively, being the increase in body mass index,
abdominal obesity and antipsychotic types predictors of
DM2 [59]. Indeed, Chinese female schizophrenics have a 1.4
fold greater risk than males for antipsychotic-associated
DM2.

The prevalence of DM is also higher in depressed
patients. Several investigations have documented that people
with DM experience depression from 1.3 to 3 times as often
as those without the disorder [60-62]. The association of DM
and depression elevates the risks of work loss [63],
functional disability [64] and micro- [65] and macrovascular
complications [66] increasing health care costs [65]. The
depression and DM association is also linked with poorer
adherence to medications and self-care activities such as
self-monitoring of blood glucose levels and adhering to a
proper diet and exercise program [67-70]. In addition,
irrespective of their sociodemographic variables, lifestyle or
health status, mortality risk is increased among depressed
diabetic patients but not among persons without DM [71].
Considering that depression has higher prevalence in women
than in men, mental health problem associated with DM
could be more relevant in females [72].

A confirmation between DM and mental problems comes
also from the association between dementia-Alzheimer's
disease (AD) and DM. DM is, in fact, a strong risk factor for
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AD [73] and recently it has been proposed to consider AD
as a new form of DM: DM3 [74]. The mechanisms for
association remain largely unknown, but vascular and brain
insulin signaling may contribute to AD progression [75].
Please note that many sex-gender differences are present in
AD [76].

Finally, it is relevant to note that in the association
between DM2 and mental illness, the disadvantaged social
position of patients with mental problems could play a role
[50].

HOW DO SEX-GENDER DIFFERENCES IN DM ARISE?
Sexual Hormones and Sex-Gender Differences

The association between estrogens and glucose
homeostasis has been debated since 1966, when Wynn and
Doar [26] first published their considerations about the
effects of oral contraceptives on lipid metabolism and
carbohydrate metabolism, which are also sensible to
physiological variation of sexual hormones (Fig. (2)). The
importance of sexual hormones is confirmed by cyclical
variation in plasma lipids and of apoliproteins during the
menstrual cycle in healthy women that has been described
by some of us [77]. Therefore, evaluating the lipid risk
profile in premenopausal women the phase of the menstrual
cycle should be taken into account. Lipids also vary during
normal pregnancy and in condition of hormonal stimulation
in healthy women [78, 79].

eno estrogens,
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Fig. (2). Role of cortisol, insulin and ERa in the pathogenesis of
obesity and DM.

Estrogens influence glucose metabolism (Fig. (3)), which
varies during menstrual cycle and pregnancy [80-82] and
polycystic ovarian syndrome [83]. Through estrogen receptor
(ER) o, estrogens increase the transcription of glucose
transporter 4 (GLUT4) and inhibit factors that down regulate
GLUT4 [84]. While ERP has opposite effects, thus the
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Fig. (3). Schematic representation of some effects of estrogens on glucose metabolism. In liver cells, estrogens through ER« increase insulin
sensitivity and decreases lipogenesis. In B cell of pancreas, estrogen through ERB, ERa and membrane estrogen receptors (GPER) receptors
increase insulin production, glucose dependent insulin secretion (GSIS), cell survival and decrease apoptosis. In different cells, estrogens
through ERo mediated the increase of GLUT4 transcription and the inhibition of factor for GLUT4 down regulation, while ERP has the

opposite effects.

ratio of EROVERP determines the global effect on GLUT4
expression [11]. Importantly, ERo. seems to prevent
immunological pancreatic B cell apoptosis and may thus
play a role in the development of DM1 [11] (Fig. (4)). A
recent human study shows that female sexual hormones may
play an important role in the pathogenesis of IFG and IGT,
both of which are known to increase the risk of developing
DM [85]. The relationship between estrogen and glucose
homeostasis is confirmed by the fact that aromatase
knockout mice have reduced glucose oxidation, increased
adiposity and insulin levels leading to DM2 in the long term
[86, 87]. Interestingly, male humans that lack aromatase also
have high insulin levels [88]. Briefly, estrogen deficiency
may affect glucose regulation and may also increase insulin
resistance in estrogen-resistant males as well as in post-
menopausal women [11].

Sexual hormones also influence the adipose tissue
localization and the secretion of adipokines, which influence
the development of insulin resistance [1] and cited literature.
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Fig. (4). Schematic representation of estrogen receptors involved in
inflammation, insulin resistance and glucose homeostasis (adapted
from Szalat, Raz, 1, 2008 [11]).

In particular, androgen receptor (AR) is more important in
visceral fat, whereas ERo and ERP are mainly localized in
subcutaneous fat [1] and cited literature. In particular, ERo
mediate different effects in the two adipose compartment
up-regulating antilipolytic aya.adrenergic receptor in
subcutaneous fat but not in visceral fat [11] and cited
literature]. The different localization of sexual hormone
receptors might explain the different patterns of obesity
between men and women [11] and cited literature. The
different amount and different distribution of adipose
tissue involve the secretion of adipokines such as leptin and
adiponectin, which are mainly secreted by subcutaneous
fat and both are usually higher in females [11] and
cited literature. While visceral fat increases fatty acids and
inflammatory cytokines such as tumor necrosis factor-a
and interleukin-6, which cause insulin resistance and
cardiovascular adverse outcomes resistance [11] ,1 and cited
literature.

Estrogen and testosterone have opposite effect on renin—
angiotensin—aldosterone system (RAAS). Estrogen appears
to increase angiotensinogen levels and decreases angiotensin
receptors type 1 (AT1) renin levels, angiotensin-converting
enzyme (ACE) activity, AT1 receptor density, and aldosterone
production [11] and cited literature. Additionally, an altered
silencing of angiotensin II receptor type 2 (AT2) receptor
gene located on X chromosome could induce a different AT2
receptor expression between sex-genders [11] and cited
literature and its activity is also estrogen related [11] and
cited literature. In fact, estrogen increases AT2 binding in
the rat adrenal gland and mouse kidney [48]. In hypertensive
rats, AT2 receptor mRNA levels in the kidney are higher in
females than in males [11] and cited literature. Importantly,
the effect of antagonist of AT1 receptors is greater in
females than in males, but this difference is small in AT2
receptor null mice [11] and cited literature. Furthermore,
estrogen increases counterparts of the RAAS (eg.,
natriuretic peptides, and ANG (1-7). Testosterone effects on
RAAS are less clear, however it seems to increase renin
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levels and ACE activity [11] and cited literature. Finally,
natural progesterone competes with aldosterone for mineral
corticoid receptor [89]. The above observation strongly suggests
that RAAS function is also controlled by sex hormones.

Genetic Factors

The complexity of inheritance and interaction with the
environment makes identification of genes involved with
DM2 difficult, however genetic factors also play a role
in sex-gender differences in DM. For example, methionine
by threonine at amino-acid position 235 (M235T) poly-
morphism in the angiotensinogen gene increases the
incidence of diabetic nephropathy in male patients with DM2
but not in female patients [90]. AT2 receptor gene is
involved in the development of kidney dysfunction and
hypertension in DM1 male patients but not in DM1 female
patients [91]. In addition, the genetic polymorphisms
regarding the thrombospondin 2 gene, the coagulation
factor III gene (F3) and the collagen domain containing
adiponectin gene and variation in acid phosphatase locus 1
are associated with fasting insulin, and insulin sensitivity in
men but not in women [92]. In women, DM is associated with
polymorphism of paraoxonase 1 gene [93]. Finally, men,
who do not produce endogenous estrogens for a missense
mutation in the aromatase gene, develop hypertriglyceridemia
and/or insulin resistance, whereas, men with estrogen
resistance to ERa deficiency develop hyperinsulinemia and
glucose intolerance [5].

The genetic factors should be further explored for a better
understanding of their impact on sex-gender difference in
DM.

Inflammatory Response

Inflammation is more evident in women with previous
gestational diabetes (GD) and DM2. Women with previous
GD have, in fact, higher level of plasminogen activator-
inhibitor-1 and C-reactive protein [80, 81], while women
with DM2 have higher levels of proinflammatory markers
(C-reactive protein and interleukin-1 receptor antagonist)
than diabetic men. In contrast, no sex-gender differences has
been observed in people with normal glucose metabolism
[94, 95]. Finally, the adiponectin reduction is significantly
more elevated in women than in men when progressing from
normal glucose tolerance to prediabetes and DM [96].

Inflammation is also linked to oxidative stress and the
control of redox state is a sex-gender process [85] and data
indicate that oxidative stress may be more increased in
diabetic women than in diabetic men, particularly for what
concerns DM1 patients [97-99].

Oxidative stress plays a pivotal role in the development
of DM complications, in fact, the diabetic metabolic
alterations cause mitochondrial superoxide overproduction in
endothelial cells of both large and small vessels, as well as
in the myocardium [100]. Reactive oxygen species over-
production activates polyol pathway flux, increases
formation of advanced glycation end products and expression
of the receptor for advanced glycation end products and its
activating ligands, produces activation of protein kinase C
isoforms and overactivity of the hexosamine pathway and
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also directly inhibits endothelial nitric oxide synthase and
prostacyclin synthase [100]. These phenomena are involved
in the pathogenesis of diabetic complications causing
defective angiogenesis in response to ischemia, activating a
number of proinflammatory pathways, and causing long-
lasting epigenetic activating the so called "hyperglycaemic
memory" [100].

Oxidative stress also influences the cell fate including
autophagy in a sex-gender specific manner [101-106].
Recently, a defective autophagy has been linked to impaired
insulin sensitivity in obesity and DM [107, 108] and
upregulating autophagy can combat insulin resistance [109].
Autophagy is inhibited by the insulin amino acid-mTOR
signaling pathway via both short-term and long-term
regulation mechanisms. Short-term inhibition can be produced
by mTOR complex 1, which causes phosphorylation and the
inhibition of Unc-51-like kinase (ULK1), which is essential
for initiation of autophagy [109, 110]. Long-term regulation
occurs vig forkhead transcription factors (FOXO1 and
FOXO03) [110], which control the transcription of autophagy-
related (ATG) genes such as ULK, LC3, which are
fundamental for autophagic process, because their activation
inhibits insulin induced activation of protein kinase B.

Finally, dysregulation of autophagic process in pancreatic
B cell contribute to decrease insulin secretion an indispensable
event in the development of DM2 [111]. It appears of
interest evaluate whether dysregulation of autophagic
process observed in DM2 either in B cells or other tissues
linked to obesity and insulin resistance are influenced by
sex-gender as occurred in other cells.

SPECIFIC SEX-GENDER RISK FACTORS

In addition, to the largely accepted risk factors for DM2
such as age higher than 45 years, obesity, pre-diabetes,
hypertension, hyperlipidemia and vascular diseases, there are
other women-specific risk factors such as sex-gender related
differences in gene polymorphisms associated with an
increased risk of DM2 (see above), ovarian syndrome,
previous GD or having delivered a child with birth weight
over or equal to 4,500 g [112].

Women Specific Risk Factors
GD

Pregnancy is normally characterized by progressive
insulin resistance that begins near mid-pregnancy and
progresses through the third trimester to levels that
approximate the insulin resistance seen in individuals with
DM2 [9]. The fact that insulin resistance rapidly abates
following delivery, suggests that the major contributors to
this state of resistance are placental hormones, however
pancreatic B cells normally increase their insulin secretion to
compensate for the insulin resistance of pregnancy [9], if
B cells are not able to compensate this insulin resistance, GD
develops. In the majority of cases, glucose intolerance
disappears after delivery, but up to one third of women will
have IFG or DM postpartum [9]. Long-term follow-up
studies (over a period of more than 10 years); reveal a stable
long-term risk of incidence of DM2 among women with GD
ranging from 5% to 50%, depending on the study [113, 114].
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Polycystic Ovarian Syndrome

Polycystic ovarian syndrome affects 6-10% of the
women of reproductive age, it features an almost three-fold
higher risk for the development of GD [115] and is
characterized by oligo- or anovulation, ovarian hyper-
androgenis and marked insulin resistance independently of
the degree of obesity [116]. Metformin, besides the other
effects, stimulates GLUT4 translocation [84] and it is able,
in some cases, to restore normal ovulatory cycles in women
with polycystic ovarian syndrome [117].

Men Specific Risk Factors

In men, factors associated with DM are to be ex-
smokers [72] and hypogonadism (see above) and perhaps
diabetic mother [118]. GD or pregestational DM could result
in growth defects in the offspring. Offspring of diabetic
mothers may be macrosomic, small for gestational age and
of normal birth weight, depending on the severity of GD, and
degree of diabetic control. However, in poorly controlled
DM without severe complications, the newborn infants
will often be macrosomic [118]. Macrosomic offspring of
mothers have at higher risk to develop glucose intolerance
later in life [119, 120]. Unfortunately, sex-gender differences
are not always reported. However, in a cohort of diabetic
pregnancies, some predictors of abnormal birth weight
display interaction with the sex of baby and associations are
generally more unfavourable to male fetuses [121].

In conclusion, men and women may have specific risk
factors and knowing them it is of pivotal importance for
health promotion policy and to allow policy makers to draw
inferences and conclusions for interventions and planning
purposes.

SEX-GENDER SPECIFICITY OF DIAGNOSTIC TESTS

As already mentioned, women have lower prevalence of
IFG and higher prevalence of IGT as men, reflecting, as
above stated, that in women a prevalence in [ cell insulin
secretion defect is present [11]. This also occurs in elderly
men [11]. Thus screening for DM in women and old men
should involve an OGTT with 2-h plasma glucose. Men with
IFG have more insulin resistance versus women with IGT
who have impaired early and late phases of insulin secretion

[11].

CHRONIC COMPLICATIONS

The previous observations e.g. the role of sexual
hormones in glucose homeostasis suggest that women and
men may have different mechanisms to develop diabetic
complications. Actually, it is clear that diabetic women lose
their normal premenopausal protection against cardio-
vascular disease [22, 122] and have more frequent and more
severe macrovascular (cardiovascular) complications than
men. While the role of sex-gender in the field of micro-
vascular complications is still area of uncertainness.

In this review, we will consider sex-gender differences
in diabetic microvascular complications only because a)
numerous studies have shown a link between micro-and
macrovascular disturbances in DM2 patients suggesting a
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common pathway of developing micro-and macrovascular
disturbances [123] b) diabetic nephropathy and diabetic
autonomic neuropathy are risk factors for cardiovascular
diseases [124-128]. Less is known about the role of
retinopathy but recent findings indicate that it is an
independent risk factor for the development of the ischemic
heart diseases and heart muscle perfusion disturbances [129,
130].

It is also important to recall that nonketotic hyperosmolar
coma is diagnosed almost twice in women than men [131],
and in another population-based study, the rate of diabetic
acidosis in females is 1.5 times that of males [132].

Macrovascular Complications and Cardiac Diseases

DM is not only an endocrine but also a cardiovascular
disease. Cardiovascular complications are the leading cause
of morbidity and mortality associated with DM, which
affects both large and small vessels and hence diabetic
complications are broadly classified as microvascular
(retinopathy, nephropathy and neuropathy) and macro-
vascular (heart disease, stroke and peripheral arterial disease)
complications [133-135].

DM confers a markedly increased risk of coronary heart
diseases in both women and men [136-139] and importantly
diabetic women do not show the decline in cardiovascular
mortality that has been observed over the last 30 years in the
U.S. population overall and in men with DM [140] and
actually the risk for women with DM exceeds that of men
[141-143] (see Table 1). In particular, the myocardial
infarction mortality rate is 4 times higher in diabetic men and
7 times higher in diabetic women than in individuals without
DM [144]. A meta-analysis of 37 prospective studies shows
that diabetic women have a 50% increase in cardiovascular
mortality compared with men with DM, even after taking
into consideration all the cardiovascular risk factors [145].

Table1. Deaths attributable to DM in different areas of
the world (modified from roglic and unwin, 2010
[256])).
Number of Deaths in Males Attributable to
DM in the 20-79 Age-Group, 2010
Affica total males 122,173
Africa total females 210,411
Europe total males 297,600
Europe total females 336,454
America total males 224,500
America total female 260,011
Asia/Pacific Regions total male 1,065,169
Asia/Pacific Regions total female 1,152,700

This situation is not completely explained by traditional
biological and psycho-social factors [146, 147] but:
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a in DMI, more girls than boys have a poor DM control
contributing to a higher rate of cardiovascular risk factors
[148, 149]. This fact might contribute to a higher
cardiovascular mortality of diabetic females later in life
[150].

b diabetic females have significantly higher rate of specific
risk factors with the exception of smoking and low HDL
than males [137].

¢ the frequency of nonfatal myocardial infarction is
increased before the clinical diagnosis of DM2 [151],
women with IGT tend to have a more atherogenic risk
profile than men years before the diagnosis of clinical
DM [152]. Thus women may stay in a more longstanding
atherogenic risk profile before the development of
hyperglycaemia [153].

d diabetic women have a more marked endothelial
dysfunction in comparison with diabetic men [154-
158]. Importantly, a prospective study shows that E-
selectin, ICAM-1, and plasminogen activator inhibitor-1
concentrations are predictive among women but not
among men and this is independent of the effects of
age, BMI, and homeostasis model assessment—insulin
resistance (HOMA-IR), a surrogate index of insulin
resistance.

e inflammation induces great insulin resistance, endothelial
dysfunction and oxidative stress and is associated with
worse cardiovascular outcomes in women with DM1 [99]
and DM2 than in matched men with DM2 [159].

f diabetic women have a greater degree of fibrinolysis/
thrombosis when compared versus men [146], thus
women with DM may be subjected to even more adverse
changes in coagulation, vascular function, and cardio-
vascular risk factor levels than diabetic men [159-161].
These abnormalities might predispose women to plaque
rupture and intraluminal thrombosis, explaining, at least
in part, the greater severity and more negative prognosis
of ischemic heart disease in diabetic women. Recent
clinical trials show that delay in development or
prevention of DM is possible, and preventive efforts
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should occur early in the pre-diabetic state [146, 162,
163].

g hypertension seems to be more frequent in diabetic
women than in diabetic men having a more deleterious
effects in women than in men [98, 164] (Fig. (5)).
Usually women are less likely than men to achieve blood
pressure control, LDL-cholesterol and metabolic control
even after a coronary event, underlining the disparity of
treatment between the two sexes [165].

h diabetic dyslipidemia (low HDL, hypertriglyceridemia
and increased small LDL particles) seems to be more
marked and dangerous in women than in men with DM
[98, 164, 165].

i notably, female diabetic patients do have also an
increased prevalence of hypoglycaemic . events over
the male sex [167] and these phenomena might add
justifications of the increased prevalence of cardio-
vascular events and mortality among female patients.

j Framingham Offspring Study evidences the significance

of isolated impaired glucose tolerance and postprandial
hyperglycaemia for cardiovascular morbidity and mortality
[21]. However, there are numerous evidences that isolated
impaired glucose tolerance and postprandial hyper-
glycaemia are independent cardiovascular risk factors in
women only [168].

Thus the stronger effect of DM on the risk of
cardiovascular disease in women compared with men might
be in part explained by a heavier risk factor burden and a
greater effect of blood pressure and atherogenic dyslipidemia
in diabetic women. Recent preliminary data suggest that in
both men and women with DM the ability to predict the
cardiovascular risk is increased using model incorporating
HbAlc levels and this effect is far more potent in women
[169]. This is in line with another recent paper in which
sex-gender differences in HbAlc and fasting plasma glucose
are likely to have a true physiopathological background
[170]. Without going in details in this discussion if these
differences cause an overdiagnosis of DM in female or
an underestimation of metabolic control, surely sex-gender

Fig. (5). Sex-gender differences in cardiovascular risk factors in diabetic patients (modified from Juutilainen et al., [166]) BP= blood

pressure, HR= hazard ratio, Tot Chol = total cholesterol.
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differences in the metabolic parameters do have a role in the
different outcomes.

However, it must also be considered nevertheless many
therapeutic trials have been conducted, no trials have been
conducted into the effects of lowering glucose therapy
according to sex-gender [11], thus is questionable of whether
all the conclusions that have been obtained in clinical trials
conducted in men are equivalent for men and women [11].

If the sex-gender effect is clearly evident on coronary
artery diseases, actually it is still disputable the effect of sex-
gender on incidence and prognosis of stroke in diabetic
patient. A sub-analysis of the United Kingdom Prospective
Diabetes Study (UKPDS) and data obtained from a Canadian
cohort show that women have less strokes than men with
DM2 [171, 172]. However, a British cohort [173] shows an
increase in the risk attributable to DM among young women,
which decreased with age. A prospective study shows diabetic
women having a poorer prognosis with in-hospital mortality
rate of 14.9 vs. 8.3% in men with DM [174]. Finally, with
DM, there is a higher incidence of stroke in women than in
men (26.1 and 17.9%, respectively), not only in the 40-49
years age category but also in other age subgroups [175].

Beyond the classical macroangiopathic complications
and hypertension, it is important to recall that DM induces
the so called diabetic cardiomyopathy, which appears as a
heart failure syndrome and it is still discussing if it is
associated with macroangiopathic or macroangiopathic
complications or it is derived by direct effect of chronic
hyperglycemia that leads to glucotoxicity, which contributes
to cardiac injury through multiple mechanisms on cardio-
myocytes in absence of hypertension and coronary artery
diseases [176]. Sex-gender differences are also seen in
diabetic cardiomyopathy and they have been recently
reviewed in Ren and Ceylan-Isik AF [177], therefore they
are not reported here. Up-to-date, the cellular and molecular
basis of intrinsic factors contributing to sex-gender disparity
of diabetic cardiomyopathy is essentially unknown. Thus
further intensive investigations should be addressed and
deserve also in view of the fact that cardiac transplantation is
less intensely considered for women [178], however women
with dilated cardiomyopathy do as well as men after
transplantation.

It is evident that for optimal investigation, diagnosis,
prevention and specific treatment of overall cardiac health
in diabetic women the previous differences must be
acknowledged, planned for, and factored into an effective
treatment regimen, which will differ significantly as a
function of the patient's sex although further intensive
investigations should be addressed.

Microvascular Complications and Sex-Gender Differences

The metabolic alterations linked to DM result also in
microvascular complications: retinopathy, neuropathy and
nephropathy being the risk to develop them directly
proportional to the duration of hyperglycaemia above a
certain threshold [110]. Furthermore, in patients with DM,
accumulating evidences suggest that small vessel disease
is also important for stroke, heart and neurodegenerative
diseases such as dementia and AD [179].

Franconi et al.

Diabetic Neuropathy

This is the most common diabetic complication and as
much as 50% of both DM1 and DM2 after 10-15 years of
disease might have sign of diabetic neuropathy [180].
Diabetic neuropathy might be autonomic or sensory, while
the autonomic form is more associated with cardiovascular
mortality, the sensory one may evolve in the diabetic foot
with resultant diabetic ulceration and amputation. Few small
studies indicate that men with DM2 have more neuropathic
complications than women [11, 181-185]. In line with these
results, amputation rate in PIMA Indians is more frequent
in men compared to women [186]. The age of onset in
Caucasian population is more precocious, approximately 4
years earlier, in men than women [187-189]. However, when
we look at Asiatic populations (Chinese), the prevalence
is higher in women than in men [190] indicating the
importance of ethnic factors suggesting the relevance of
genes, the contribution of unmeasured environmental factors,
or a combination of both. Nevertheless the low prevalence,
women seem to have higher mortality associated with
diabetes-related amputation [188].

The underlying mechanisms of sex-gender differences
are still unknown. Most likely, cultural factors, education
and social status, and more hazardous lifestyle of men
contribute to such differences in sex-gender ratios in diabetic
neuropathy [53, 191, 192]. In turn, a lower economic status
could induce unhealthy behaviors, such as smoking and
alcohol addiction, overeating, and insufficient physical
activities [66, 193]. Additionally, a lower economic status is
also linked with poorer access to health care services and
self-care practices.

The autonomic neuropathy in DM2 depends on changes
in sympathetic innervations, disordered adrenergic receptor
expression, and altered catecholamine levels in the
myocardium that manifests clinically as resting tachycardia,
orthostasis, exercise intolerance, and silent myocardial
infarction and myocardiopathy [194]. The autonomic
neuropathy partly contribute to induce QT prolongation
[194], a parameter controlled by sexual hormones [195-197],
which is the result of the total duration of ventricular
myocardial depolarization and repolarization. When it is
corrected for heart rate (QTc), it is predictive of
cardiovascular mortality in apparently healthy people [198]
of both sexes [199] as well as in DM [200].

Indeed, prevalence of prolonged QTc interval is higher in
people with DM1 and DM2 as compared to non-diabetics
[201-203] and prolonged QTc is reported to be an
independent marker for coronary heart disease in DM1 and
DM2, and has been demonstrated to be highly significant
predictor of cardiac death even in newly diagnosed DM2
[204]. Prolongation of QTc interval is often assumed to
increase the risk for development of malignant ventricular
arrhythmias and has been demonstrated to be highly
significant predictor of cardiac death [205, 206]. The
cumulative incidence of prolonged QTc in DMI1 is
significantly different in men (13.9%) versus women
(24.5%), even after adjustment for confounding factors, such
as age, BMI, physical activity, and blood pressure [207].
This difference could justify the higher risk of cardiovascular
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disease and congestive heart failure observed in women with
respect to diabetic men. However a metanalysis that includes
4584 patients mainly (92%) affected by DM1 shows that at a
given specificity of 86%, prolonged QTc is more sensitive in
men than in women [208].

Autonomic diabetic neuropathy is also associated with
hypoglycaemic unawareness, a condition by which the
subject does not feel the hypoglycaemic state. This effect
might increase the severity of the hypoglycaemic events, that
in some situations might drive acute cardiovascular events
such as stroke or myocardial infarction [209], in women,
hypoglycaemia has been described almost 1.5 times that of
men [131].

Diabetic Nephropathy

Diabetic nephropathy is a progressive disease caused by
angiopathy of capillaries in the kidney glomeruli and is a
prime indication for dialysis in many Western countries
where sexual hormones and free fatty acids might have a
pivotal role in the pathogenesis of glomerulopathy and
tubulointerstitial lesions in DM [210].

Sex-gender impact on diabetic nephropathy has been
extensively reviewed in [211]. Generally, female have less
renal diseases, however the advantage is less evident in
diabetic nephropathy than in non-diabetic kidney diseases
[212]. However, data on diabetic patients are not univocal
because some studies suggest that male gender remains a risk
factor for the development of micro- and macroalbuminuria
as well as the progression of an established diabetic
nephropathy [213]. In particular, renal diabetic injury may be
exacerbated by poor glycemic control and elevated systolic
blood [214]. Indeed, women aged 60 years or older have
greater hypertension prevalence than men [215] and have a
lower control of blood pressure than men especially if they
are diabetic [216]. Besides, data on metabolic control
indicate that, under good metabolic control, DMI1 women
are more likely to develop diabetic nephropathy than men,
whereas the situation is vice-versa under poor metabolic
control [217].

The sex-gender differences seems to start at puberty,
young girls with DM1 have a higher risk to develop micro-
albuminuria than age-matched boys [212] suggesting the
importance of sexual hormones. This is confirmed by
the oral contraceptives effects. In fact, oral contraceptives
containing high doses of estrogens promote the risk of
diabetic nephropathy, whereas lower estrogen doses have no
influence on renal function [213]. As reported above, sexual
hormones largely affect RAAS system, a system that has
been involved in the development and progression of
diabetic nephropathy [218]. Importantly, at least in young
patients with DM, inhibition of angiotensin converting
enzyme declines arterial pressure in men and women, but
only women display a reduction in glomerular filtration rate
and filtration factor [219].

Ethnic factors are also important in the development of
diabetic renal disease. Native Americans, Hispanics
(especially Mexican-Americans), and African-Americans
have much higher risks of developing end stage renal
diseases than non-Hispanic whites with DM2 [220] and it,
together with DM duration, metabolic control and hormones
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[213, 217], affects interactions between sex-gender and
diabetic nephropathy.

Finally, genetic polymorphism could have a role in
sexual dimorphism in diabetic renal disease. In the sex-
determining region Y-box 2 gene is associated with diabetic
nephropathy in female DMI1 patients [192]. Whereas the
M235T polymorphism in the angiotensinogen gene increases
the incidence of nephropathy only in DM2 male patients [90]
being the angiotensin II type 2 receptor gene involved in the
development of kidney disease in DM1 male patients but not
in DM1 women [91].

Interestingly, hyperglycemia induces an attenuation of
effective renal plasma flow and renal blood flow as well as
an increase in renal vascular resistance and filtration fraction
in normoalbuminuric, normotensive DM1 women but not in
their male counterparts [219]. This different regulation of
renal hemodynamics in hyperglycemic state might, in part,
explain the loss of female protection in the presence of DM
[219].

Uric acid is independently associated with parameters of
glycemic control showing a bell shaped relationship with
both HbAlc and fasting glucose levels, whereas the
relationship is linear with fasting serum C-peptide and
insulin concentrations [221]. Notably, the relationship
between uric acid and parameters of glycemic control is
stronger among women than men [222]. The association
between uric acid levels and kidney disease is nearly linear
up to 7 mg dV/l in women and 8 mg dl/1 in men [223] above
these thresholds, however, the effect of increased uric acid
on new-onset-kidney disease is increasing rapidly and, thereby,
more pronounced in women as compared to men [223].

A conclusive answer to whether sex-gender plays a role
in the development and progression of renal disease in DM
is still missing, thus it urges to investigate the effect of
sex-gender in a more detail and precise manner also in
consideration of the fact that diabetic nephropathy increase
the cardiovascular risk [124, 125] and is the first cause of
renal dialysis.

Diabetic Retinopathy

Diabetic retinopathy is one of the main causes of visual
loss in individuals aged 20-64 years old [224] and is present
in more than 77% of patients with DM2 who survive for over
20 years with the disease [10]. It is estimated that 28.5% of
U.S. diabetic patients over age 40 have diabetic retinopathy.
Diabetic retinopathy is slightly more prevalent among
women than men being more severe in men [225-227].
Another study suggests that diabetic women have, on the
contrary, a higher probability than diabetic men of suffering
from visual impairment [228]. Male sex is independently
associated with the presence of diabetic retinopathy, as well
as higher HBAlc level, longer duration of diabetes and
higher systolic blood pressure [224].

To conclude with diabetic microvascular complications,
studies focused on sex-gender differences are scarcely
represented either at preclinical or clinical levels. It is
therefore mandatory to design studies focalizing on sex-
gender differences in order to ameliorate both the specific
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outcomes and the eventually associated cardiovascular ones
(see above).

THERAPY

Numerous studies demonstrate less than optimal
management of DM in the United States. Data from the
1999-2000 National Health and Nutrition Examination
Surveys (NHANES) show that only 37% of adults with DM
achieve the recommended targets for HbAlc, blood pressure,
and cholesterol level [229]. These problems are more evident
when groups of vulnerable patients, such as women and
racial/ethnic minorities are considered. Correa-de-Araujo et al.,
[230] report that 28.9% of diabetic women versus 33.9% of
diabetic men have received all five recommended services
(i.e., HbAlc testing, lipid profile, influenza immunization,
eye and foot examination) in the appropriate time frame.
Disparities do not decrease although the concern now
arising that women are at higher relative risk than men of
having complications including diabetic ketoacidosis and
cardiovascular diseases [231-236]. Usually women are less
likely than men to achieve blood pressure, LDL-cholesterol
and HbAlc targets after a coronary event, and this gap does
not appear to narrow between 1994 and 2007 [167, 237].
Effects of sex-gender on the outcome are reported in some
randomized controlled trial evaluating drug effects on DM
risk reduction [238-246]. Subgroup analysis suggestes that
in the prevention of progression to overt DM, metformin
might be more effective in young obese men and acarbose in
older non-obese women [11]. Furthermore, the Irbesartan
Type II Diabetic Nephropathy Trial (IDNT) also found that
postmenopausal women benefit less from treatment with
irbesartan than do men, [247]. Of note, none of these trials
were primarily designed to assess sex-gender differences in
the benefit from a specific intervention strategy. The lack of
trails with sex-gender specific analysis raises the question of
whether the conclusions that have been obtained in clinical
trials can be translated in women. Evidently, future studies
should consider sex-gender differences in the setting of
intervention trials in consideration of multiple differences
between men and women and they must be performed with
all drugs. Indeed many aspects of DM therapy are reviewed
in Szalat and Raz [11] whereas the sex-gender safety aspects
of cardiovascular therapy are reviewed in Franconi et al,
[248], but here we want to recall that the prolongation
of QTc induced by sympathetic neuropathy could have
important consequences on pharmacological therapy because
numerous drugs (more than 100) can prolong QT especially
in females [249]. It is evident that diabetic people with QTc
prolongation, especially if women should be treated with
precautions with drugs that can induces QTc prolongation
paying a lot of attention in doing therapeutic associations.

Another important aspect is the different illness
orientation of men and women. Women have a larger interest
and concern for health appearing more careful to symptoms
of illness and seek medical care more frequently than men
[250]. This different orientation could have a role in explaining
the high incidence of drug adverse effects in women.

Importantly, men and women may have a different
adherence to therapeutic treatments. Insulin therapy can
induce weight gain either in DM1 or DM2 [251]. The
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increase in body weight induced by insulin therapy can have
dangerous consequences because it has been calculated
that for every 1 kg of weight gain after high school, the risk
of coronary heart disease increases in women and men of
5.7% and 3.1%, respectively [252]. Indeed, insulin-induced
weight gain together with the fear of hypoglycemic
crisis may participate in the development of the so called
“psychological insulin resistance” [252], a syndrome that it
is present in about 28% of patients [253] and is more
frequent in women [254). “Psychological insulin resistance”
may result in the reluctance of patients to both initiate and
intensify insulin treatment, leading to delayed treatment
initiation.

Treatment strategies should be improved in both sexes,
but women with DM may be in need of more aggressive
treatment, especially when cardiovascular disease is present.

CONCLUSIONS

sex-gender specific care for people with DM is not
widely considered and in our opinion it is important and
urgent to consider this point. Between 1971 and 2000,
diabetic men have had a 43% relative reduction in the age-
adjusted mortality rate (including cardiovascular mortality
rate), which is similar to that of men without diabetes. In
contrast, diabetic women have no reduction neither in total
nor in cardiovascular mortality and the all-cause mortality
rate, indeed diabetic women doubled mortality [255]. It
is rather well known that women are less likely to be
intensively treated, as men are, after an acute coronary event,
and it is possible to speculate that even in achieving diabetic
control less attention is paid for women in respect to male
sex. Thus further insights into the sex-gender differences in
the mechanisms that control the cardiovascular function
and DM are urgently required to eventually set different
therapeutic approaches including sex-gender approach in the
all drug development processes. Sex-gender approach from
preclinical studies to outcomes is mandatory to provide a
more base evidenced medicine for women and to reach
equity between men and women and to improve sex-gender
awareness and competency in the health care system. In
order to do that new preclinical and clinical research is
urgently required, but is also necessary to implement
education on gender issue to care providers.

ABBREVIATIONS

ACE = Angiotensin-converting enzyme
AD = Alzheimer's disease

AT1 = Angiotensin receptors type 1
AT2 = Angiotensin receptors type 2
AR = Androgen receptor

BMI = Body mass index

ER = Estrogen receptors

DM = Diabetes mellitus

FOXO1 and = Forkhead transcription factors
FOX03
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GADA = Glutamic acid decarboxylase

GD = Gestational diabetes

GLUT4 = Glucose transporter 4

GSIS = Glucose-dependent insulin secretion

HOMA-IR = Homeostasis model assessment-insulin
resistance

IFG = Impaired fasting glucose

IGT = Impaired glucose tolerance

M23ST = Methionine by threonine at amino-acid
position 235

RAAS = Renin-angiotensin—aldosterone system

ULK1 = Unc-51-like kinase
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